126 research outputs found

    The Level of Isoprostanes as a Non-invasive Marker for in vivo Lipid Peroxidation in Secondary Progressive Multiple Sclerosis

    Get PDF
    Oxidative stress leads to lipid peroxidation and may contribute to the pathogenesis of lesions in multiple sclerosis (MS), an autoimmune disease characterized by inflammatory as well as degenerative phenomena. Isoprostanes are prostaglandin-like compounds which are formed by free radical catalysed peroxidation of arachidonic acid esterified in membrane phospholipids. They are a new class of sensitive specific markers for in vivo lipid peroxidation. In this study 26 patients (15 females and 11 males; mean age 48.2 ± 15.2 year; mean disease duration 10.0 ± 6.5 year) with secondary progressive MS (SPMS) and 12 healthy controls were enrolled. In patients with multiple sclerosis the lipid peroxidation as the level of urine isoprostanes and the level of thiobarbituric acid reactive species (TBARS) in plasma were estimated. Moreover, we estimated the total antioxidative status (TAS) in plasma. It was found that the urine isoprostanes level was over 6-fold elevated in patients with SPMS than in control (P < 0.001). In SPMS patients TBARS level was also statistically higher than in controls (P < 0.01). However, we did not observed any difference of TAS level in serum between SPMS patients and controls (P > 0.05). In patients with SPMS the lipid peroxidation and oxidative stress measured as the increased level of isoprostanes was observed. Thus, we suggest that the level of isoprostanes may be used as non-invasive marker for a determination of oxidative stress what in turn, together with clinical symptoms, may determine an specific antioxidative therapy in SPMS patients

    Role of IKK/NF-κB Signaling in Extinction of Conditioned Place Aversion Memory in Rats

    Get PDF
    The inhibitor κB protein kinase/nuclear factor κB (IKK/NF-κB) signaling pathway is critical for synaptic plasticity. However, the role of IKK/NF-κB in drug withdrawal-associated conditioned place aversion (CPA) memory is unknown. Here, we showed that inhibition of IKK/NF-κB by sulphasalazine (SSZ; 10 mM, i.c.v.) selectively blocked the extinction but not acquisition or expression of morphine-induced CPA in rats. The blockade of CPA extinction induced by SSZ was abolished by sodium butyrate, an inhibitor of histone deacetylase. Thus, the IKK/NF-κB signaling pathway might play a critical role in the extinction of morphine-induced CPA in rats and might be a potential pharmacotherapy target for opiate addiction

    Epigenetic Alterations Are Critical for Fear Memory Consolidation and Synaptic Plasticity in the Lateral Amygdala

    Get PDF
    Epigenetic mechanisms, including histone acetylation and DNA methylation, have been widely implicated in hippocampal-dependent learning paradigms. Here, we have examined the role of epigenetic alterations in amygdala-dependent auditory Pavlovian fear conditioning and associated synaptic plasticity in the lateral nucleus of the amygdala (LA) in the rat. Using Western blotting, we first show that auditory fear conditioning is associated with an increase in histone H3 acetylation and DNMT3A expression in the LA, and that training-related alterations in histone acetylation and DNMT3A expression in the LA are downstream of ERK/MAPK signaling. Next, we show that intra-LA infusion of the histone deacetylase (HDAC) inhibitor TSA increases H3 acetylation and enhances fear memory consolidation; that is, long-term memory (LTM) is enhanced, while short-term memory (STM) is unaffected. Conversely, intra-LA infusion of the DNA methyltransferase (DNMT) inhibitor 5-AZA impairs fear memory consolidation. Further, intra-LA infusion of 5-AZA was observed to impair training-related increases in H3 acetylation, and pre-treatment with TSA was observed to rescue the memory consolidation deficit induced by 5-AZA. In our final series of experiments, we show that bath application of either 5-AZA or TSA to amygdala slices results in significant impairment or enhancement, respectively, of long-term potentiation (LTP) at both thalamic and cortical inputs to the LA. Further, the deficit in LTP following treatment with 5-AZA was observed to be rescued at both inputs by co-application of TSA. Collectively, these findings provide strong support that histone acetylation and DNA methylation work in concert to regulate memory consolidation of auditory fear conditioning and associated synaptic plasticity in the LA

    Partner relationship satisfaction and maternal emotional distress in early pregnancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recognition of maternal emotional distress during pregnancy and the identification of risk factors for this distress are of considerable clinical- and public health importance. The mental health of the mother is important both for herself, and for the physical and psychological health of her children and the welfare of the family. The first aim of the present study was to identify risk factors for maternal emotional distress during pregnancy with special focus on partner relationship satisfaction. The second aim was to assess interaction effects between relationship satisfaction and the main predictors.</p> <p>Methods</p> <p>Pregnant women enrolled in the Norwegian Mother and Child Cohort Study (n = 51,558) completed a questionnaire with questions about maternal emotional distress, relationship satisfaction, and other risk factors. Associations between 37 predictor variables and emotional distress were estimated by multiple linear regression analysis.</p> <p>Results</p> <p>Relationship dissatisfaction was the strongest predictor of maternal emotional distress (β = 0.25). Other predictors were dissatisfaction at work (β = 0.11), somatic disease (β = 0.11), work related stress (β = 0.10) and maternal alcohol problems in the preceding year (β = 0.09). Relationship satisfaction appeared to buffer the effects of frequent moving, somatic disease, maternal smoking, family income, irregular working hours, dissatisfaction at work, work stress, and mother's sick leave (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>Dissatisfaction with the partner relationship is a significant predictor of maternal emotional distress in pregnancy. A good partner relationship can have a protective effect against some stressors.</p

    Approach to epigenetic analysis in language disorders

    Get PDF
    Language and learning disorders such as reading disability and language impairment are recognized to be subject to substantial genetic influences, but few causal mutations have been identified in the coding regions of candidate genes. Association analyses of single nucleotide polymorphisms have suggested the involvement of regulatory regions of these genes, and a few mutations affecting gene expression levels have been identified, indicating that the quantity rather than the quality of the gene product may be most relevant for these disorders. In addition, several of the candidate genes appear to be involved in neuronal migration, confirming the importance of early developmental processes. Accordingly, alterations in epigenetic processes such as DNA methylation and histone modification are likely to be important in the causes of language and learning disorders based on their functions in gene regulation. Epigenetic processes direct the differentiation of cells in early development when neurological pathways are set down, and mutations in genes involved in epigenetic regulation are known to cause cognitive disorders in humans. Epigenetic processes also regulate the changes in gene expression in response to learning, and alterations in histone modification are associated with learning and memory deficits in animals. Genetic defects in histone modification have been reversed in animals through therapeutic interventions resulting in rescue of these deficits, making it particularly important to investigate their potential contribution to learning disorders in humans

    Sparse Representation of Brain Aging: Extracting Covariance Patterns from Structural MRI

    Get PDF
    An enhanced understanding of how normal aging alters brain structure is urgently needed for the early diagnosis and treatment of age-related mental diseases. Structural magnetic resonance imaging (MRI) is a reliable technique used to detect age-related changes in the human brain. Currently, multivariate pattern analysis (MVPA) enables the exploration of subtle and distributed changes of data obtained from structural MRI images. In this study, a new MVPA approach based on sparse representation has been employed to investigate the anatomical covariance patterns of normal aging. Two groups of participants (group 1∶290 participants; group 2∶56 participants) were evaluated in this study. These two groups were scanned with two 1.5 T MRI machines. In the first group, we obtained the discriminative patterns using a t-test filter and sparse representation step. We were able to distinguish the young from old cohort with a very high accuracy using only a few voxels of the discriminative patterns (group 1∶98.4%; group 2∶96.4%). The experimental results showed that the selected voxels may be categorized into two components according to the two steps in the proposed method. The first component focuses on the precentral and postcentral gyri, and the caudate nucleus, which play an important role in sensorimotor tasks. The strongest volume reduction with age was observed in these clusters. The second component is mainly distributed over the cerebellum, thalamus, and right inferior frontal gyrus. These regions are not only critical nodes of the sensorimotor circuitry but also the cognitive circuitry although their volume shows a relative resilience against aging. Considering the voxels selection procedure, we suggest that the aging of the sensorimotor and cognitive brain regions identified in this study has a covarying relationship with each other

    BDNF Methylation and Maternal Brain Activity in a Violence-Related Sample

    Get PDF
    It is known that increased circulating glucocorticoids in the wake of excessive, chronic, repetitive stress increases anxiety and impairs Brain-Derived Neurotrophic Factor (BDNF) signaling. Recent studies of BDNF gene methylation in relation to maternal care have linked high BDNF methylation levels in the blood of adults to lower quality of received maternal care measured via self-report. Yet the specific mechanisms by which these phenomena occur remain to be established. The present study examines the link between methylation of the BDNF gene promoter region and patterns of neural activity that are associated with maternal response to stressful versus non-stressful child stimuli within a sample that includes mothers with interpersonal violence-related PTSD (IPV-PTSD). 46 mothers underwent fMRI. The contrast of neural activity when watching children-including their own-was then correlated to BDNF methylation. Consistent with the existing literature, the present study found that maternal BDNF methylation was associated with higher levels of maternal anxiety and greater childhood exposure to domestic violence. fMRI results showed a positive correlation of BDNF methylation with maternal brain activity in the anterior cingulate (ACC), and ventromedial prefrontal cortex (vmPFC), regions generally credited with a regulatory function toward brain areas that are generating emotions. Furthermore we found a negative correlation of BDNF methylation with the activity of the right hippocampus. Since our stimuli focus on stressful parenting conditions, these data suggest that the correlation between vmPFC/ACC activity and BDNF methylation may be linked to mothers who are at a disadvantage with respect to emotion regulation when facing stressful parenting situations. Overall, this study provides evidence that epigenetic signatures of stress-related genes can be linked to functional brain regions regulating parenting stress, thus advancing our understanding of mothers at risk for stress-related psychopathology
    corecore